

1984 ...

… 2017 ...

… 2025 ...

… still alive!

 Inhalt

 1. Einleitung 2

 2. Zeilenverwendung 4

 3. Variablen und Felder 5

 4. Befehle 7

 5. Die Subroutinen des Bascoders 11

 6. Textmodus 12

 7. Grafikmodus 16

 8. Farben 17

 9. Sound 19

 10. Arbeit mit Dateien 20

 11. Drucken (außer Grafik) 22
 Ausgabe 2025

 12. Weitere Bascoder-Routinen 24

 13. Das BasiCode-Protokoll 27

 14. Weblinks 28

 15. Ein Mini-Wörterbuch 29

 16. Literatur 29

1. Einleitung
BasiCode ist eine Basic-Variante, die sich gut durch den Begriff "Computer-Esperanto"
charakterisieren lässt.
Ab 1980 kamen immer mehr Computer auf den Markt, die für den privaten Anwender
erschwinglich waren. Gewöhnlich waren sie mit der anfängerfreundlichen Programmiersprache
Basic ausgestattet, doch in mindestens so viel gegenseitig inkompatiblen Dialekten wie es
Hersteller gab.
Aus dem Wunsch von Hobbyisten nach Erfahrungsaustausch über Systemgrenzen hinweg
wurde in den Niederlanden mit der ersten Version von BasiCode zunächst ein vereinheitlichtes
Kassettenaufzeichnungsverfahren entwickelt.
Man schränkte den Befehlsumfang auf die Befehle ein, die von allen Heimcomputern ver-
standen wurden. Weil diese Beschränkung kein befriedigender Zustand war, kam man auf den
Gedanken, weitere Befehle, die bei gleicher Wirkung nur unterschiedliche Namen bei den
verschiedenen Computern hatten, als GOSUB-Routinen zu realisieren.
Für den einzelnen Computertyp wurde nun ein individuelles Grundprogramm, der sogenannte
Bascoder, erstellt, der in diesen GOSUB-Routinen die computereigenen Befehle ausführte.
Solche Bascoder entstanden für nahezu jeden Heimcomputer und darüber hinaus auch für
Basic auf CP/M- und auch DOS-Computern.

Größere Popularität erreichte BasiCode außer in seinem
Herkunftsland, den Niederlanden, in der DDR, weil dort ein
großer Mangel auch an Software herrschte, und erlebte seine
Blütezeit Ende der 80er Jahre, besonders faszinierend war zu
jener Zeit die Verbreitung von BasiCode-Programmen über den
Rundfunk, sogar über mehrere 100 km hinweg auf Mittelwelle.
Mit der immer stärkeren Verdrängung der Heimcomputer durch
"große PCs" in den Privathaushalten geriet auch BasiCode
weitestgehend in Vergessenheit. Zwar haben sich seine
Datenaustauschmöglichkeiten erweitert, man ist keinesfalls mehr
nur auf Kassetten beschränkt, sondern es stehen außer Disketten,
SD-Cards und USB-Sticks auch DFÜ und Internet zur
Verfügung, aber die vergleichbare äußerliche Schlichtheit der
Programme lockt heute keinen 3D-Grafik-, Stereo-Sound-,
MHz- und Gigabyte-verwöhnten Konsumenten von Spiele-
CDROMs mehr hinter dem Ofen hervor, sodass BasiCode

heutzutage nur eine interessante historische Entwicklung ist, die höchstens noch von solchen
Nostalgikern wahrgenommen wird, die ohnehin nicht von ihren Geräten der "Computer-
Steinzeit" lassen können.

Rechtliches:

Um die Aktivitäten zur Weiterentwicklung von BasiCode zu koordinieren, hatten sich die
Autoren dieses Programmsystems in einer Stiftung zusammengeschlossen, der "Stichting
BASICODE" und zur Förderung des BasiCode-
Gedankens auf persönliche materielle Vergütung
verzichtet. Programme anderer Autoren darf man zwar
weiterentwickeln, aber die neue Version nicht ohne
Genehmigung des Autors verbreiten. Der Name des

Autors darf bei einer Kopie nicht entfernt werden. Auch Übersetzungen bedürfen der
Genehmigung des Autors. Programme in BasiCode dürfen nicht verkauft oder in sonstiger
Weise zur persönlichen Bereicherung genutzt werden. Wenn sich die Stiftung auch 1991
aufgelöst hat, sollte es trotzdem eine Frage des Anstands sein, diese Maßgaben weiter zu
respektieren.

In der vorliegenden Broschüre sollen die
Festlegungen erläutert werden, die unum-
gänglich sind, damit BasiCode-Programme
auch wirklich auf allen beteiligten Computern
genutzt werden können, wie unterschiedlich
auch die Möglichkeiten sind, die die einzelnen
Computer zunächst bieten.

Kursiv dargestellte Passagen kennzeichnen
neue Eigenschaften der farbtauglichen
jüngsten Version (vgl. S. 17). Für monochrome
Computer wie Sinclair ZX81 oder Amstrad
PCW (Schneider JOYCE) wurden die
Neuerungen der Version 3C nach Möglichkeit
umgesetzt.

2. Zeilenverwendung
Die Zeilen von 0 bis 999 sind dem computerspezifischen Bascoder vorbehalten. Auf manchen
Computern sind sie in Maschinencode realisiert und daher nicht wie normale Basic-Zeilen
listbar. Die hier liegenden GOSUB-Routinen werden in Kapitel 5 zusammengefasst und in den
nachfolgenden Kapiteln im Detail beschrieben.
Das (auf andere Computer übertragbare) BasiCode-Programm nutzt die Zeilen 1000 bis
32767. Zeilennummern unter 1000 sind nicht zugelassen! Die Länge einer Zeile darf
einschließlich Zeilennummer, Leerzeichen und Zeichen für Zeilenende höchstens 60 betragen.
Eine Programmzeile kann mehrere Anweisungen – getrennt durch ":" (Doppelpunkt) –
enthalten.
Es muss stets eine Zeile 1000 und eine Zeile 1010 vorhanden sein. Zeile 1000 hat folgende
vorgeschriebene Form: 1000 A=wert:GOTO 20:REM programmname
Mit der Variablen A wird (für die Computer, bei denen das erforderlich ist) festgelegt, wie
groß der Speicherbereich sein soll, der für Stringvariablen reserviert wird. Anschließend wird
das Programm in Zeile 20 des Bascoders fortgesetzt, wo die Initialisierung des Computers für
die BasiCode-Betriebsart durchgeführt wird:

 - Löschen des Bildschirms,
 - Löschen der Variablen,
 - Wahl des Text-Modus,
 - Setzen der Bildschirmfarben

Die Code-Ziffern werden den Variablen CC(0) und CC(1) zugewiesen; als Default-Einstellung
gilt: CC(0)=7 → Zeichenfarbe – Weiß, CC(1)=0 → Hintergrund – Schwarz. Bei Start des
Programms werden diese Werte mit der Subroutine 100 übernommen und die Farben
entsprechend gesetzt.

 – Deklarieren und Initialisieren der Variablen HO, VE, HG, VG und SV.
Von dort erfolgt ein Rücksprung nach Zeile 1010.

Für das Beenden des BasiCode-Programms ist der Befehl GOTO 950 vorgeschrieben.
Dort wird der Computer definiert in seine reguläre Basic-Betriebsart zurückversetzt, der Bild-
schirm wird gelöscht, BasiCode-Programm und -Subroutinen bleiben erhalten.
Für die Nutzung der Zeilen ab 1000 gibt es weitere Festlegungen, die im nachfolgenden Text-
kasten aufgeführt sind.

3. Variablen und Felder in BasiCode
Allen im Programm verwendeten Variablen ist vor ihrem ersten Aufruf ein Wert zuzuweisen –
nicht alle beteiligten Computer sind in der Lage, Variablen implizit zu initialisieren. Die
Variablen HO, VE, HG, VG und SV werden durch den Sprung nach Zeile 20 initialisiert.
Numerische Variablen sind vom Typ "real" und haben einfache Genauigkeit (sechs gültige
Ziffern), Integer-Variablen (z.B. als Schleifenzähler) sind nicht nutzbar.
Eine Stringvariable wird durch den Zusatz "$" nach dem Namen gekennzeichnet; sie kann
255 Zeichen lang sein.
Logische Werte werden je nach Computer unterschiedlich repräsentiert (z.B. "wahr" => "+1"
oder "-1"). Eine logische Variable darf deshalb nicht Gegenstand arithmetischer Operationen
sein. Vergleiche, die "wahr" oder "falsch" ergeben, sind in Klammern zu setzen, um die
Abarbeitungsfolge zu gewährleisten.
Felder (arrays) sind vor Gebrauch in einem Programm zu dimensionieren. Ein wiederholtes
Ausführen der Dimensionierung ist zu vermeiden. Mit einer DIM-Anweisung können mehrere
Felder gleichzeitig dimensioniert werden. Zugelassen sind ein- oder zweidimensionale Felder
(Listen oder Tabellen). Mit der Dimensionierung werden gleichzeitig die Elemente auf "0"
bzw. "leer" gesetzt. Es kann nicht davon ausgegangen werden, dass der Aufruf einer
Feldvariablen im Programm automatisch ein Feld mit 11 Elementen dimensioniert. Auch
Felder mit weniger als 11 Elementen sind zu dimensionieren (z.B. DIM A(4)). Die Zählung
der Feldelemente beginnt bei "0".
Variablen- und Feldernamen sind maximal zwei Zeichen lang (Stringvariablen einschließlich
Kennung "$" also maximal drei):
 – Großbuchstabe
 – Großbuchstabe, Großbuchstabe oder
 – Großbuchstabe, Ziffer, keine Sonderzeichen wie "!", "%", "#" usw.
Um Konflikte mit Schlüsselwörtern und Systemvariablen mancher Computer zu vermeiden,
sind eine Reihe von Variablennamen verboten:

Außerdem sind Variablennamen mit dem Anfangsbuchstaben "O" der Verwendung in den
GOSUB-Routinen unterhalb der Zeile 1000 vorbehalten.
Bestimmte Variablennamen sind für die Übergabe von Parametern an die Bascoder-Routinen
reserviert.

4. Befehle
Folgende Befehle dürfen in BasiCode-Programmen verwendet werden:

Bei einigen davon sind jedoch zusätzliche Hinweise zu beachten:
Für die Winkelfunktionen ist das Argument im Bogenmaß anzugeben.
Die logischen Operatoren AND und OR dürfen in BasiCode nicht zur bitweisen Verknüpfung
von Zahlen, z.B. A=5 AND 7 verwendet werden.
Bei der Verwendung der Funktionen ASC und CHR$ (der Umkehrfunktion von ASC) ist
Vorsicht geboten, da manche Computer den Zeichensatz abweichend vom ASCII codieren
(z.B. C64).
Neben den eingebauten Standardfunktionen können auch vom Benutzer definierte Funktionen
nach ihrer Definition mit DEF FNname verwendet werden. Für den Funktionsnamen gelten
die Festlegungen wie für Variablennamen (also max. zwei Zeichen). Die Definition muss in
eine Zeile (60 Zeichen) passen. Sie ist nur in der einfachen Form mit einer Variablen und nicht
rekursiv anwendbar. Zeichenkettenfunktionen durch den Benutzer zu definieren, ist in
Basi-Code-Programmen nicht möglich.
DATA: Bis zum Zeilenende folgen der DATA-Anweisung, durch Komma getrennt, Zahlen
oder Zeichenketten. Zeichenketten müssen in Anführungszeichen gesetzt werden. In einer
DATA-Zeile dürfen keine weiteren Basic-Anweisungen (auch nicht REM) stehen.
DIM s. S. 5
FOR ... TO ... STEP ... NEXT: Die Schleife wird mindestens einmal durchlaufen. Ohne
STEP zahl ist die Schrittweite 1. Die Schleife darf nur an einer einzigen Stelle verlassen
werden. Aus der Schleife darf nicht herausgesprungen werden – vorzeitiges Verlassen
durch: Laufparameter = Endwert, Sprung zum NEXT.

GOSUB: Zeilennummer darf keine Variable sein, Zeilennummer muss existieren.
GOTO: siehe GOSUB, Ausnahme 20 und 950.
IF ... THEN GOSUB oder IF ... THEN zeilennummer. ELSE nicht nutzbar
INPUT: nur für eine Variable oder Zeichenkette. Zeichenketten dürfen keine Kommentare
und keine Doppelpunkte enthalten. Eine Prompt-Zeichenkette ist nicht zulässig (muss durch
vorherige PRINT-Ausgabe erzeugt werden).
LEFT$: Anzahl der zu isolierenden Zeichen darf nicht 0 sein.
LET: kann weggelassen werden.
LOG(argument) gibt den natürlichen Logarithmus zur Basis e (= 2.718...) zurück.
Einzelne BASIC-Dialekte geben über LOG als Wert der Funktion den Logarithmus zur Basis
10. Es wird zwischen LOG und LN unterschieden. Der Bascoder gleicht dies aus.
MID$(A$, N) oder MID$(A$, M, N): Der numerische Ausdruck (M, N) kann einen Wert
von 1 ... 255 annehmen; der Wert "0" führt zu einer Fehlermeldung.
NEXT: siehe FOR. Nach NEXT muss die zugehörige Variable stehen, mehr als eine Variable
ist nicht zulässig. Für jedes FOR nur ein NEXT zulässig.
NOT: siehe AND
ON: die Variable darf nur die zulässigen Werte annehmen, also von 1 bis zur Anzahl der
nach GOTO bzw. GOSUB stehenden Adressen

OR: siehe AND
PRINT: Formatierung nur mit ",", ";", und TAB. Empfehlung, "," und TAB durch GOSUB
110 zu ersetzen. Nicht durch "?" ersetzbar.
READ: liest eine oder mehrere Variablen aus den DATA-Zeilen, Variablentyp muss korrekt
sein.
REM: nicht durch Apostroph oder Ausrufezeichen ersetzbar, kein Doppelpunkt in REM-
Zeile.
RESTORE: nur ohne Zeilennummer
RIGHT$: s. LEFT$.
RUN: nur ohne Zeilennummer verwendbar.
TAB: TAB(0) nicht erlaubt. Sicherer GOSUB 110.
VAL: Da die VAL(A$)-Funktion in unterschiedlichen Dialekten unterschiedliche Wirkungen
hat, ist sicherzustellen, das A$ rein numerisch ist.

Befehle, die es in nicht allen Basic-Dialekten gibt, sind in BasiCode verboten, einige von ihnen
sind jedoch durch Subroutinen des Bascoders ersetzbar (s. Kap. 5).

Weitere Basicbefehle, die spezifisch vorhanden sind und hier nicht aufgeführt wurden, sollten
auch nicht genutzt werden, um eine universelle Austauschbarkeit zu gewährleisten.
Die numerischen Funktionen
 – MEM oder
 – FRE(parameter)
zur Angabe des freien Speicherplatzes
dürfen in BasiCode nicht verwendet
werden. Dazu dient allein die Subroutine
270 mit gleichzeitiger "garbage collection"
und die Abfrage des Wertes der Variablen
FR.
Die Bildung von Pseudozufallszahlen
geschieht in BasiCode-Programmen allein
über die Subroutine 260 und die Variable
RV. Funktionsaufrufe oder Kommandos
wie:
 - RND(parameter),
 - RANDOMIZE, RAND
sind nicht zugelassen.
Die Funktion STR$(A) ist in BasiCode verboten; an ihrer Stelle ist die Subroutine 300 mit
den Variablen SR bzw. SR$ aufzurufen.

5. Die Subroutinen des Bascoders
GOSUB Wirkung Variable Seite

 100 Textbetrieb, Schirm löschen -- 12
 110 Positionieren des Cursors HO, VE 13
 120 Registrieren der Cursorposition HO, VE 13
 150 Bildschirm – reverse Darstellung SR$ 13
 200 Tastaturabfrage IN$, IN 14
 210 Warten auf Tastendruck IN$, IN 14
 220 Zeichen auf Bildschirmposition HO, VE, IN 15
 250 Akustisches Signal -- 19
 260 Pseudozufallszahl RV 24
 270 Freier Speicherplatz FR 24
 280 Abschalten der Stoptaste FR 24
 300 Wandeln in Stringvariable SR, SR$ 25
 310 Formatieren numer. Variablen SR, SR$, CT, CN 25
 330 Wandeln von Klein- in Großbuchst. SR$ 26
 350 Druckerausgabe SR$ 22
 360 Drucker: Wagenrücklauf, Zeilenvorschub – 22
 400 Tonerzeugung SP, SD, SV 19
 450 Warteroutine SD, IN, IN$ 26
 500 / Öffnen des Kanals NF$, NF 20
 540 Peripherer / Lesen IN$, IN 21
 560 Speicher \ Schreiben SR$, IN 21
 580 \ Schließen des Kanals NF 21
 600 Grafischer Betrieb, Schirm löschen – 16
 620 Punkt (Pixel) setzen bzw. Löschen HO, VE, CN 16
 630 Linie zeichnen bzw. Löschen HO, VE, CN 16
 650 Text im Grafikbetrieb ausgeben SR$, HO, VE 16

6. Textmodus
GOSUB 100
Die Subroutine 100 löscht den Bildschirm und setzt den Computer in den Textbetrieb, sofern
vorher über die Subroutine 600 der Grafik-Betrieb eingeschaltet war. Der Hintergrund erhält
die Farbe, die in CC(1) festgelegt ist und die Schrift wird in der Farbe entsprechend dem Inhalt
von CC(0) dargestellt. Diese Farben gelten im Ablauf des Programms bis zu einer Änderung von
CC(0) und/oder CC(1) und der nächstfolgenden GOSUB 100-Anweisung. Mit dem Start eines
Programms (Initialisierung über den Sprung GOTO 20) wird das Unterprogramm 100
automatisch aufgerufen.

Werte, die Variablen vor Aufruf des Unterprogramms zugewiesen wurden, werden nicht
verändert. Dies gilt auch für HO und VE.
Beim Start eines BasiCode-Programms wird der Computer in den Textbetrieb gesetzt
(Initialisierung mit dem unbedingten Sprung "GOTO 20"). In dieser Betriebsart sind auf dem
Bildschirm im Regelfall 24 Zeilen mit 40 Zeichen/Zeile darstellbar. Da manche Computer
bis zu 80 Zeichen/Zeile abbilden können, ist diesem Umstand evtl. durch das Programm
Rechnung zu tragen.
Die Belegung der Zeile 25 und die der letzten Position einer Bildschirmzeile ist zu vermeiden.
Unter Umständen kann dies zu einem Scrollen des Bildschirms und zu einem Versetzen des
Cursors in die nächste Bildschirmzeile führen.
Die Position des Cursors wird durch die Variablen HO (0 ... 39) und VE (0 ... 24) und die
Subroutine 110 bestimmt.
Mit der Initialisierung, d.h. vor Beginn des eigentlichen Programms, werden den Variablen HO
und VE die je nach Computermodell möglichen maximalen Werte zugewiesen (z.B. HO=39
und VE=24). Die Zählung auf dem Bildschirm beginnt links oben (HO=0, VE=0).

Auf dem Amstrad PCW ist nur eine monochrome Zeichendarstellung möglich (Zeichen – hell;
Hintergrund – dunkel).
GOSUB 110
Die Subroutine 110 positioniert den Cursor; sie entspricht damit den Anweisungen "LOCATE
(X,Y)" oder "PRINT AT X,Y". Sinnvoll ist dieses Unterprogramm in Verbindung mit PRINT-
oder INPUT-Anweisungen oder mit der Aufforderung zur Tastatur-Betätigung über die
Subroutine 210. Für manche Situationen ist es nützlich, mit der Cursorpositionierung auch die
Text- und/oder Hintergrundfarbe ändern zu können. Das ist nicht auf allen Computern
umsetzbar und ist auch nicht Bestandteil der BasiCode-Festlegungen.
Werden den Variablen HO und VE unzulässige Werte zugewiesen (z.B. HO>39 oder VE>24),
so wird der Cursor willkürlich gesetzt, z.B. in die Mitte des Bildschirms!

GOSUB 120
Über diese Subroutine kann die momentane Cursorposition abgefragt werden. Deren Stellung
ergibt sich aus den Variablen HO und VE. In Verbindung mit der Subroutine 110 kann die
Bildschirmausgabe gesteuert werden.
GOSUB 150
Das Unterprogramm 150 erlaubt die reverse ("auffallende") Darstellung eines Text-Strings.
Der String (A$="Titel") wird mit PRINT A$ in üblicher Form dargestellt. Nach Zuweisung an
SR$ werden am Beginn und Ende je drei Leerzeichen zugefügt, die Darstellung erfolgt revers.
Die Stringlänge vergrößert sich um sechs Zeichen. Der Cursor steht nach dem dritten
Leerzeichen nach A$ in der gleichen Zeile; um ihn in die nächste Zeile zu setzen, muss eine
PRINT-Anweisung folgen. Ggf. kann der Cursor mit GOSUB 110 neu positioniert werden.

Beispiel:
nnnn A$="Titel"
nnnn HO=10:VE=3:GOSUB 110
nnnn SR$=A$:GOSUB 150:PRINT

Es bestehen aber noch weitere Möglichkeiten. Ein Beispiel:
CC(0)=4:CC(1)=1:SR$="TEST":GOSUB 150
Damit wird das Wort TEST in Blau auf einem grünen Untergrund ausgegeben. Für den weiteren
Ablauf des Programms bleibt es bei den vor der letzten GOSUB 100-Anweisung mit CC(0) und
CC(1) eingestellten Farben. Änderungen haben bis zum nächsten GOSUB 100 keinen Einfluss
auf die normale Zeichen-Darstellung.

GOSUB 200, GOSUB 210 – Tastatur
Zur Abfrage der Tastatur stellt BasiCode-3 zwei Routinen zur Verfügung, die sich in ihrer
Wirkung auf den Lauf des Programmes unterscheiden. Sie entsprechen den BASIC-
Anweisungen GET und INKEY$ o.ä.
Die Subroutine 200 registriert, ob während des Programmlaufs – d.h. während der
Wirksamkeit dieses Unterprogramms – eine Taste gedrückt wurde; das Programm läuft weiter.
Im Gegensatz dazu hält die Subroutine 210 den Programmlauf bis Tastaturbetätigung an.
In beiden Fällen wird den Variablen IN und IN$ ein Wert zugewiesen:

 IN$ – das der Taste entsprechende Zeichen (als String) und
 IN – "echter" ASCII-Wert dieses Zeichens.

Wurde keine Taste betätigt (Subroutinen 200, 450), so haben die Variablen die Werte:
IN$=leer; IN=0.
IN kann Werte von 32 ... 95 annehmen; Groß- und Kleinbuchstaben werden durch die gleichen
ASCII-Werte repräsentiert (ASCII 65 => "A" oder "a").
Außerdem gelten:

ASCII 13 – Return / Enter,
 28 ... 31 – Cursor-Steuerung,
 127 – Delete.

Wurde eine Nicht-ASCII-Taste gedrückt, wird der Variablen IN eine negative Zahl
zugewiesen.
In der Version -3C können auch die – sofern vorhandenen – Funktionstasten betätigt und zur
Steuerung des Programmablaufs verwendet werden. Über die o.a. Routinen wird IN$ = “" und
für F1 : IN = -1, F2 : IN = -2, F3 : IN = -3 usw. zurückgegeben.

Häufig wird die Subroutine 210 angewendet, um durch Betätigung einer Taste den
Programmlauf zu steuern (Menu-Auswahl, Ende des Programms usw.). Als Vorteil stellt
sich dar, dass die ASCII-Werte der Variablen IN keinen Unterschied zwischen Klein- und
Großbuchstaben machen. Es genügt die Abfrage der Variablen IN (I); das durch Tastendruck
dargestellte Zeichen muss nicht über IN$ abgefragt werden (II).

In den folgenden Beispielen soll IN bzw. IN$ auf "J/N" (ja/nein) abgefragt werden.

 I nn10 GOSUB 210
 nn20 IF IN=74 THEN...
 nn30 IF IN=78 THEN...
 nn40 GOTO nn10

II nn10 GOSUB 210
 nn20 IF (IN$="J")OR(IN$="j") THEN...
 nn30 IF (IN$="N")OR(IN$="n") THEN...
 nn40 GOTO nn10

Die Verringerung des Aufwandes ist deutlich.

Eine andere Verwendung der Subroutine 210 ist die Nachbildung der INPUT-Anweisung in
der Form, dass auch Anführungszeichen, Doppelpunkt und Komma direkt eingegeben und
einer String-Variablen zugewiesen werden können.

GOSUB 220
Mit der Subroutine 220 wird der ASCII-Wert eines in der Position HO, VE dargestellten
Zeichens an die Variable IN zurückgegeben. IN nimmt nur Werte von 32 – 95 an. Zwischen
Klein- und Großbuchstaben kann durch Auswertung der Variablen CN (Wert
computerabhängig, in den Subroutinen festgelegt) unterschieden werden. Zu berücksichtigen
bleibt auch die für einzelne Computer unterschiedliche Codierung der Zeichen (z.B.
Commodore).
Eine mögliche Anwendung ist eine Hardcopy des Textbildschirms (s. S. 23).

7. Grafikmodus
GOSUB 600 löscht den Bildschirm und schaltet den Grafikmodus ein. Der Bildschirm zeigt
nach dem Löschen die Farbe, die in CC(1) codiert ist. Die Befehle unter GOSUB 110, 120,
150, 220 sowie PRINT, INPUT und File-Arbeit sind nicht zulässig! Für Textdarstellung ist der
Textmodus mit GOSUB 100 einzuschalten (Grafik ausschalten).
Für die Koordinatenaufteilung wird unter BasiCode der Punkt 0:0 oben links festgelegt. Die
Mitte ist 0,5:0,5 und unten rechts ist 1:1 (zulässig ist nur <1). Die Werte werden in
HG / VG übernommen.
Das Längen-Höhen-Verhältnis ist 4:3!

GOSUB 620 setzt einen Punkt entsprechend an HO/VE (DRAW / PSET / PLOT) und setzt
den Grafikcursor an diese Stelle.
GOSUB 630 zeichnet eine Linie vom Punkt des aktuellen Grafikcursors zum Punkt
HO/VE und setzt den Grafikcursor dorthin (LINE).
GOSUB 650 Darstellung von Text im Grafikmodus. Der Text wird vorher in SR$ übergeben.
Der Grafikcursor steht an der linken oberen Ecke des Schriftbeginns. Der Text darf nicht
über den rechten Rand reichen. Anschließend steht der Cursor an der in HO, VE definierten
Position.
Für die Grafikbefehle kann über CN ein Farbwert übergeben werden. CN=0 ist
Vordergrundfarbe und CN=1 ist Hintergrundfarbe.
Für das Programmieren in BasiCode-3C gilt: CN=0 – Grafik / Text wird in der Farbe
dargestellt, die in CC(0) festgelegt ist. CN=1 – Grafik / Text wird gelöscht, d.h. in der Farbe
dargestellt, die vor dem letzten GOSUB 600 in CC(1) codiert war.

8. Farben
Wie schon in der Version -3 werden die hier notwendigen Anweisungen durch Subroutinen
ersetzt. Es sind folgende Farben zugelassen:

Die Code-Ziffern werden den Variablen CC(0) und CC(1) zugewiesen; als Default-Einstellung
gilt:

 CC(0)=7 > Zeichenfarbe – Weiß
 CC(1)=0 > Hintergrund – Schwarz

Bei Start des Programms werden diese Werte mit der Subroutine 100 übernommen und die
Farben entsprechend gesetzt.

Sie gelten im Ablauf des Programms bis zu einer Änderung und der nächstfolgenden GOSUB-
100-Anweisung. Die Programmzeile

 CC(0)=2:CC(1)=6:GOSUB 100

liefert nach Löschen des Schirmes rote Zeichen auf gelbem Hintergrund.

Um einen hinreichenden Kontrast der Darstellung zu erreichen, empfiehlt sich ein Unterschied
von "4" zwischen den Variablen in CC(0) und CC(1). Der Variablenname "CC" gilt im Sinne des
BasiCode-Protokolls als verboten!

 9. Sound
GOSUB 250 – Signalton
Diese Subroutine gibt ein akustisches Signal
(entspricht ASCII 7 – BEL). Damit kann –
sofern erforderlich – die Aufmerksamkeit auf
einen bestimmten Schritt im Programm
gelenkt werden. Allerdings ist das Signal nur
von kurzer Dauer. Oft ist es notwendig, das
Signal andauern zu lassen, um dann den
Programmlauf nach Betätigen einer Taste
verzweigen oder enden zu lassen.

GOSUB 400
Die Ausgabe ist auf einen Kanal beschränkt. Über drei Parameter wird eine Voreinstellung
vorgenommen:

SP Tonhöhe (0-127) in Halbtonabstufungen mit 69 als Kammerton a (ca. 400 Hz)
SD Tondauer (1-255) in Stufen zu 0,1 Sekunden
SV Lautstärke (0-15)

In der Regel sind mehrere Oktaven möglich, wobei der mittlere Bereich sinnvoll ist.

Da Musikstücke meist in DATA-Zeilen abgelegt werden, noch zwei Hinweise: Zeilennummern
für DATAs = 25000-29999, die maximale Eingabelänge für Programmzeilen beträgt nur 60
Zeichen!

10. Arbeit mit Dateien
BasiCode-3 erlaubt es, Datenfiles auf externen Speichern (Kassette oder Diskette) anzulegen,
zu schreiben und zu lesen. Das beschränkt sich jedoch auf sequentielle Files. Relative Files
werden von den einzelnen Computern in zu unterschiedlicher Form verwaltet.
Damit ist es möglich, Datenfiles zwischen verschiedenen Computern – im BasiCode-Format –
auszutauschen.
Die File-Verwaltung sieht vor:

 – Eröffnen eines Files,
 – Schreiben bzw. Lesen,
 – Schließen des Files,
 – Fehlerabfrage.

GOSUB 500 – Eröffnen eines Files
Mit der Eröffnung eines Files ist
dessen Name in der Variablen NF$ und das angesprochene Speichermedium (Kassette,
Diskette oder Microdrive) in NF festzulegen. Der Filename (NF$) kann maximal sieben
Zeichen umfassen. Die Variable NF enthält den Code, der das Speichermedium festlegt und
bestimmt ob das File zum Schreiben oder Lesen eröfnet wird.
Die Wirkung des der Variablen NF zuzuweisenden Codes wird im Einzelnen durch das
Übersetzungsprogramm bestimmt.
Grundsätzlich gilt für die Zuweisung an NF:

Um die Austauschbarkeit sicherzustellen, empfiehlt es sich, Datenbestände im BasiCode-
Format abzulegen.
Bei Verwendung der Codeziffern 2, 4, 6 bzw. 3, 5, 7 ist zu beachten, dass es computertypische
Unterschiede gibt.

Mit der folgenden Programmzeile wird ein Datenfile (zum Schreiben oder Lesen) eröffnet:
nnnn NF=n:NF$="name":GOSUB 500

Mit Abfrage der Variablen IN kann der Status, d.h. das Auftreten eines Fehlers (vgl. weiter
unten) festgestellt werden.

GOSUB 580 – Schließen eines Files
Mit diesem Unterprogramm wird das mit NF=n geöffnete File geschlossen. Es genügt

nnnn GOSUB 580
ohne dass NF=n vorher explizit angegeben wird.
Sollen zur Anlage eines Files mehrere Speicher angesprochen werden (z.B. BasiCode-Kassette
und Diskette), so ist das erste File zu schließen bevor das zweite eröffnet wird.

GOSUB 560 und 540 – Schreiben und Lesen eines Files
Zum Schreiben eines Datenfiles dient die Subroutine 560. Der Inhalt von SR$ wird in das File
– gekennzeichnet durch NF – geschrieben. Numerische Werte sind über "GOSUB 300" oder
"GOSUB 310" in die Stringvariable SR$ zu wandeln. Strings sind an SR$ zu übergeben.
Die Schreibroutine hat folgende Form:

nnnn SR=A:GOSUB 300 (oder 310)
nnnn GOSUB 560

 oder nnnn SR$=A$:GOSUB 560
Das Lesen eines Files (gekennzeichnet durch NF) erfolgt über die Subroutine 540. Der
gelesene Wert wird der Variablen IN$ zugewiesen, auch hier ist bei numerischen Werten und
anschließenden arithmetischen Operationen eine Typwandlung über VAL(IN$) durchzuführen.
So gilt für das Lesen eines Files:

nnnn GOSUB 540:A$=IN$
 oder nnnn GOSUB 540:A=VAL(IN$)

Die Variablen A$ bzw. A können dann im Programm weiter verwendet werden. Auch hier ist
die Fehlerabfrage sinnvoll.

Status- bzw. Fehlerabfrage
Bei jedem Zugriff auf externe Speicher wird der Variablen IN ein Wert zugewiesen, der zeigt,
ob er fehlerfrei ablief. Vom Inhalt der Variablen IN können dann weitere Handlungen
abhängig gemacht werden.

Anmerkungen:

1. In Verbindung mit dem Ansprechen externer Speicher werden u.U. die untersten Zeilen des
Bildschirms für Benutzerhinweise (prompts) benötigt; diese sind deshalb freizuhalten.
2. Im grafischen Betrieb sollen die Routinen zur Fileverwaltung nicht angesprochen werden.
Der Computer ist über "GOSUB 100" in den Textbetrieb zu setzen.

11. Drucken (außer Grafik)
GOSUB 350, 360 – Ausgabe über den

 Drucker

Grundsätzlich kann davon ausgegangen werden,
dass neben der Ausgabe über den Bildschirm
auch ein Ausdruck auf Papier (Erläuterungen,
Tabellen usw.) sinnvoll ist. Das Programm soll
also die Wahl unter beiden Möglichkeiten
lassen.

Der Drucker wird über die Subroutinen 350
bzw. 360 – und nur über diese – ange-
sprochen. Die Anweisung "GOSUB 350"
entspricht der Anweisung "PRINT SR$;" – bei
einer Ausgabe über den Bildschirm. Vorher ist
der Inhalt der auszugebenden Variablen der
Variablen SR$ zuzuweisen. Dies geschieht für

Zeichenkettenvariable (z.B. A$):

 SR$=A$:GOSUB 350 oder
 SR$="abcde":GOSUB 350

numerische Variable (z.B. A):

 SR=A:GOSUB 300 (oder GOSUB 310 [Wandlung in Stringvariable SR$])
 GOSUB 350

Der Ausdruck erfolgt ohne Wagenrücklauf und Zeilenvorschub; die Druckzeile wird nicht
abgeschlossen. Die bewirkt die Subroutine 360; mit dieser Anweisung ist jede
Anweisungsfolge zum Ausdruck einer Zeile zu beenden.

Wird die Anweisung "GOSUB 360" allein benutzt, erfolgt der Ausdruck einer Leerzeile (dies
entspricht "PRINT" bei einer Ausgabe über den Bildschirm).

Als Beispiel einer Text-Hardcopy-Routine für BasiCode-3C-Programme bietet sich an:

 1010 HT=HO:VT=VE: REM Schirmgröße
 :
 21000 CN=0: REM wenn bc-3c-prog. mit
 21010 : REM bc-3(!)- routinen laufen
 21020 FOR VE=0 TO VT:SR$=""
 21030 FOR HO=0 TO HT
 21040 GOSUB 220
 21050 SR$=SR$+CHR$(IN+CN)
 21060 NEXT HO
 21070 GOSUB 350:GOSUB 360
 21080 NEXT VE
 21090 RETURN

Eine Lösung zum Erstellen einer Grafik-Hardcopy kann von BasiCode nicht bereitgestellt
werden – die computerspezifische Realisierung ist ggf. in den Zeilen 20000 - 24999 abzulegen
(vor der Verbreitung günstigerweise durch "REM" zu deaktivieren), wo der Nutzer eines
anderen Computers stattdessen seine Routine erstellen kann.

12. Weitere Bascoder-Routinen
GOSUB 260 – Zufallszahlen
Hiermit wird der Zufallszahlengenerator des Computers aufgerufen; in RV werden dann
Pseudozufallszahlen im Bereich

 0 <= RV < 1
zurückgegeben. In der Regel werden nur ganzzahlige Werte benötigt, die durch Rechnung
gewonnen werden können.

GOSUB 270 – Freier Arbeitsspeicher
Man kann davon ausgehen, dass BasiCode-Programme eine Länge von max. 18 Kbyte haben
können, in Einzelfällen auch mehr. Infolge der Übertragung der einzelnen Zeichen und der
rechnerinternen Umwandlung in "Token" ist die im Computer gespeicherte Programmlänge
kürzer. Im Computer ist ein freier Arbeitsspeicher von mind. 16 KByte erforderlich.
Der nach Laden des Bascoders freie Speicherplatz (in Bytes) kann im Direkt-Modus mit

 GOSUB 270:PRINT FR
abgefragt werden. Die Wiederholung nach dem Laden des Programms und die Bildung der
Differenz ergibt die computerspezifische Programmlänge (in Bytes).

GOSUB 280 – STOP-Taste
Diese Routine schaltet die Wirksamkeit einer STOP-, BREAK-, ESCAPE-Taste aus, wenn
vor ihrem Aufruf der Variablen FR der Wert "1" zugewiesen wurde. Unterbrechen eines
laufenden Programms mit Tastendruck ist nicht mehr möglich.
Wird FR=0 gesetzt, wird nach GOSUB 280 die STOP-Taste wieder aktiviert.

GOSUB 300 – Typwandlung
Die Subroutine 300 entspricht der in BASIC vorhandenen Funktion STR$(x), mit der
numerische in Stringvariable gewandelt werden können. Damit werden die Leerräume vor und
hinter numerischen Daten unterdrückt:

A$=STR$(A) wird ersetzt durch:
SR=A:GOSUB 300:A$=SR$

GOSUB 310 – Formatieren numerischer Daten
Zahlen werden in BasiCode – je nach Größe und Computer – mit 6 bzw. 9 Stellen oder in
wissenschaftlicher Notation ("E-Format") angezeigt. Manche Computer (PCs) erlauben die
Darstellung in "doppelter" Genauigkeit (bis zu 18 gültige Ziffern).
Die Subroutine 310 ähnelt der "PRINT USING"-Anweisung mancher BASIC-Dialekte, die
jedoch vielfältiger eingesetzt werden kann als die Subroutine 310. In BasiCode-3 ist nur das
Formatieren der Ausgabe numerischer Werte – über Bildschirm oder Drucker – möglich.
Die formatierte Ausgabe des Wertes der numerischen Variablen A erfolgt über die Variablen
SR$, CT und CN. Dabei bedeuten:
 SR numerische Variable, deren Wert in SR$ formatiert dargestellt werden soll,
 CT Anzahl der Zeichen, die in SR$ enthalten sind (einschl. Dezimalpunkt und Vorzeichen),
 CN Anzahl der Nachkommastellen.
Diese Variablen sind vor dem Aufruf der Subroutine 310 zu belegen.
Die Zeichenkette SR$ kann maximal nur neun Ziffern enthalten, d.h. dass CT begrenzt ist:

 1 – Vorzeichen,
 + vk – Anzahl der Vorkommastellen,
 + 1 – Dezimalpunkt,
 + CN – Anzahl der Nachkommastellen,

 CT – Anzahl der Zeichen

In Abhängigkeit von der Größe der darzustellenden Zahl gilt:
vk + CN <= 9 (ohne führende Null falls SR < 1)

Mit der Subroutine 310 ist es nicht möglich, Zahlen im wissenschaftlichen Format
darzustellen.

Kann die Zahl nicht im vorausbestimmten Format angezeigt werden, enthält SR$ Sterne ("*").
Ggf. wird die Zahl auf CN Stellen gerundet. Die Werte der Variablen CT, CN und SR werden
mit dem Aufruf der Subroutine nicht verändert.
Beim Programmieren sind die Werte für CT und CN sorgfältig zu bestimmen, z.B.:
 – Ganze Zahlen (-1E8 ... +1E8): CT=11
 – SR < 1 (Vorzeichen, führende Null, Dezimalpunkt, neun Nachkommastellen): CT=12, N=9
Der Variablen CT kann ein Wert bis zu 20 zugewiesen werden; dies führt zu einer
Positionierung der Ausgabe in der Zeile. Besser ist es, die Subroutine 110 zu benutzen.

GOSUB 330 – Klein- → Großbuchstaben
Dieses Unterprogramm ändert alle in der Zeichenkette SR$ vorhandenen Kleinbuchstaben in
Großbuchstaben, indem der ASCII-Wert der Zeichen im Bereich 96 ... 128 um 32 vermindert
wird. Aus ASCII 97 ("a") wird ASCII 65 ("A"). Da das Alphabet die ASCII-Werte 97 ... 122
umfasst, werden auch die Sonderzeichen im Bereich 123 ... 126 gewandelt.
Die Zeichen der ursprünglichen Zeichenkette werden nicht geändert.

GOSUB 450 – Warteroutine
Diese Subroutine unterbricht den Programmlauf für eine vorgegebene Zeitspanne. Durch
Drücken einer Taste kann sie abgebrochen werden. Sie entspricht der PAUSE- bzw. SLEEP-
Anweisung mancher BASIC-Dialekte.

Die Wartezeit ist vor dem Aufruf der Variablen SD zuzuweisen:

 Wartezeit (Sekunden)
 SD = ---------------------------
 0.1

Wird eine Taste gedrückt, so wird die Routine abgebrochen, den Variablen IN und IN$
werden der ASCII-Wert und das Zeichen übergeben, die Variable SD enthält die Restzeit (in
Einheiten von 0.1 Sekunden).
Um eine nicht abbrechbare Pause zu erreichen, wird vorgeschlagen, die Routine 400 mit dem
Parameter SV=0 zu verwenden, also einen Ton der Lautstärke Null zu spielen.

13. Das BasiCode-Protokoll
Das ursprüngliche Aufzeichnungsmedium von BasiCode war die Kassette. Bei Computern, die
auf jeden Fall über Diskettenlaufwerke verfügen, wurde die Arbeit mit Kassetten in separate
Programme außerhalb des Bascoders verlegt (CP/M: BCREAD.COM, BCWRITE.COM
– DOS: BASICODE.COM oder BASICODE.EXE), ein Interface zum Anschluss des
Kassettengerätes an den Parallelport müsste zur Verfügung stehen.

Die Aufzeichnung erfolgt mit einer 1200-Hz-Schwingung für ein 0-Bit und zwei 2400-Hz-
Schwingungen für ein 1-Bit.
Programme werden, da unterschiedliche Computer unterschiedliche Token verwenden, als
ASCII-Listings und in einem Zug übertragen. Weiterhin gibt es die Möglichkeit, Daten
(Buchstabenfolgen oder Zahlen nach Umwandlung durch GOSUB 300) als Files zu speichern,
dann erfolgt eine Gliederung in Blöcke zu 1024 Byte.
Die Übertragung jedes Bytes (mit dem niederwertigsten Bit zuerst) erfolgt asynchron mit
einem Start- und zwei Stoppbit. Außerdem wird in jedem Byte das achte Bit invertiert, das
läuft auf ein drittes Stoppbit hinaus und erhöht damit zusätzlich die Datensicherheit, da das
8. Bit bei ASCII-Zeichen immer 0 ist.

Eine Programmübertragung hat folgenden Aufbau:
· ca. fünf Sekunden Startton (2400 Hz) zum
 Synchronisieren
· ein Startbyte (STX, start of text), durch
 Invertierung des 8. Bits 82H
· das eigentliche Programm (ASCII-File, einzelne
 Zeilen durch ENTER getrennt, wegen der
 Invertierung des 8. Bits 8DH)
· ein Stopbyte (ETX, end of text), mit invertiertem
 8. Bit 83H
· ein Checkbyte (Prüfsumme)
· ca. eine Sekunde Abschlusston (2400Hz)

Ein Datenfile ist wie folgt aufgebaut:
· fünf Sekunden 2400 Hz
· ein Startbyte (SOH, start of header), 81H nach
 Invertierung des 8. Bits
· Blocknummer von 0 (80H mit invertiertem 8. Bit)
 beginnend
· 1024 Datenbyte (mit jeweils invertiertem 8. Bit)
· Ende-Byte (ETX, end of text), 83H nach Invertieren des 8. Bits
· ein Checkbyte (Prüfsumme)
· eine Sekunde Abschlusston (2400 Hz)
· beim letzten Datenblock, weil er kürzer als 1024 Byte sein kann, ein Byte (EOT,
 end of transmission), nach Invertierung des 8. Bits 84H und weitere 84H , bis die

 Länge 1024 erreicht ist

Selbstverständlich lassen sich BasiCode-Programme auch per Diskette (sowie durch serielle
Kopplung, DFÜ, Internet oder SD-Cards, USB-Sticks usw.) übertragen, findige Bastler haben
inzwischen Lösungen für viele historische Computer gefunden, außerdem gibt es zu
Emulatoren meist auch passende Begleitprogramme – in jedem Fall ist hier jedoch peinlich
darauf zu achten, die ASCII-Form des Abspeicherns zu verwenden – das computerinterne
verkürzte Speicherformat (Token) ist nur für Computer des selben Typs lesbar.

14. Weblinks
https://de.wikipedia.org/wiki/BASICODE

ausführlicher Wikipedia-Artikel
http://basicode.de/

Bascoder für verschiedene Computer sowie viele Programme
https://github.com/robhagemans/basicode

viele Programme aus verschiedenen Quellen
http://robhagemans.github.io/basicode/

BasiCode unmittelbar im webbrowser ausführen
http://www.kc85emu.de/scans/rfe0190/Basicode.htm

Aufzeichnungsformat (Auszug aus dem DDR-BasiCode-Buch)
https://github.com/mhaupt/basicode http://www.jens-mueller.org/jbasicode/index.html

ein BasiCode-Interpreter in Java Java-BasiCode-Interpreter in KC85-Optik

https://www.researchgate.net/profile/Frank-Veraart-2/publication/254803550_Basicode_Co-
Producing_a_microcomputer_esperanto/links/54733fde0cf216f8cfaeca57/Basicode-Co-
Producing-a-microcomputer-esperanto.pdf

sehr informative Beschreibung der Entwicklung

15. Ein Mini-Wörterbuch
BESTAND Datei
DUUR Dauer
FOUT Fehler
FOUTE INVOER falsche Eingabe
GEEF UW KEUZE Bitte wählen Sie
GELUID Sound
GRAFIEK OP HET SCHERM Grafik auf dem Bildschirm
GRAFISCH BEDRIJF Grafik-Betriebsart
HOOFDLETTER Großbuchstabe
HOOFDPROGRAMMA Hauptprogramm
KLAAR Löschen (vgl. CLEAR)
KLEUR Farbe (vgl. COLOR)
PAGINA Seite (vgl. PAGE)
REGEL Programmzeile
SPATIEBALK Leertaste
SWART schwarz
TEKEN LIJNSTUK ein Geradenstück zeichnen
TOETS Taste
TOT ZIENS bis bald
UITLEG Erklärung
U KUNT KIEZEN UIT : Sie können wählen aus :
WISSEN löschen
WIT weiß

16. Literatur
Michael Wiegand; Manfred und Heike Fillinger:

 Basicode. Otto Maier Verlag Ravensburg 1984 ISBN 3-473-44010-8
 auf beiliegender Kassette Bascoder für Apple II + IIe, BBC Modell A + B,
 Colour Genie, Commodore 3000, 4000 + 8000, C 64, PET 2001, VC 20, DAI, Dragon 32,
 Junior (elektor), erw. Version mit 9KB-Basic, Junior mit VDU-Karte, Sharp MZ 80 A,
 Sharp MZ 80 K, ZX 81, ZX Spectrum, TRS 80 Modell I od. III/Videogenie
 und fünfzehn BasiCode-Programme

Hermine Bakker, Jacques Haubrich (Autoren), Stichting BASICODE (Herausgeber):

 Het BASICODE-3 boek, Buch und Kassette, Kluwer Technische Boeken BV Verlag,
 Deventer-Antwerpen, Belgien, ISBN 90-201-2111-1, NUGI 434/857

Horst Völz (federführender Autor):

 BasiCode. Verlag Technik, Berlin 1990 Bestellnummer: 554 342 0 ISBN 3-341-00895-0
 auf beiliegender Schallplatte Bascoder für KC 85/3 & 85/2, KC 85/4, Commodore C-64,
 CPC-464, -664, -6128, KC compact, KC 87, KC 85/1, Z9001, Z1013,
 C plus 4 & C 16 (64 K) und AC 1
 sowie mehrere Programmlistings im Buch

